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14 Abstract 

15 Indices of abundance are commonly used in fisheries stock assessment models to 

16 represent trends in population size over time; however, an index can misrepresent such trends 

17 when catchability varies, sampling gears change or spatial sampling frames shift. Here we 

18 develop a state-space model in a Bayesian framework that combines both chevron trap 

19 catches and video counts into a single integrated index. The modeling approach accounts for 

20 variation in sampling efficiency (catchability) of both sampling gears and adjusts for aspects 

21 of changes in the spatial sampling frame (sampling intensity and spatial coverage) through 

22 time due to monitoring program development. We validate the model using a simulation 

23 study and then demonstrate its utility using data on vermilion snapper Rhomboplites 

24 aurorubens from the period 1990-2016. The index suggests high variation in the abundance 

25 of vermilion snapper, particularly for years previous to 2000 and a systematic decline in 
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26 abundance between the early 1990s and 2016. This pattern culminates (2016) with vermilion 

27 snapper at about 16% of their average early 1990s abundance which is a stronger decline than 

28 is indicated by the current index used for stock assessment of the species. 

29 
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33 1. Introduction 

34 

35 Fisheries harvest policies are typically based on the results of fitting population 

36 dynamics models with a variety of data types (Hilborn and Walters, 1992; Walters and 

37 Martell, 2004). One essential piece of information used in many fisheries stock assessments 

38 is a metric that indexes changes in total stock size through time (Maunder and Punt, 2004). 

39 These indices are typically derived from some form of fishery-dependent or -independent 

40 catch or count per-unit-effort data and are assumed to change in proportion to abundance, and 

41 thus reflect a scaled version of the total stock size. The resultant indices are used to “tune” 

42 stock assessment models, affecting estimates of population dynamics quantities and 

43 management reference points, such as harvest targets. Due to their importance for effective 

44 fisheries management, much attention has been paid to fisheries index development (e.g. 

45 Maunder and Starr, 2003; Maunder and Punt, 2004; Maunder et al., 2006); however, 

46 obtaining efficacious indices reflecting true changes in total stock size can be quite difficult 

47 (Kimura and Somerton, 2006). 

48 Analysts face many challenges when developing abundance indices for stock 

49 assessments, particularly regarding the assumption of proportionality. One of the simplest 

50 representations of an abundance index is �� = ���, where the index �� is the product of the 

51 true abundance �� and the catchability � (i.e. the proportion of �� sampled). As long as 

52 catchability is constant through time, the assumption of proportionality is met and the index 

53 will have the desirable property of reflecting true proportional changes in abundance. 

54 However, when catchability varies, changes in � (or ��) are confounded with changes in ��, 

55 such that �� may not adequately represent true abundance trends. Complicating this matter is 

56 that � (almost) always varies when sampling fish for a variety of reasons (Monk, 2013; 

57 Gwinn et al., 2016). For example, the influence of vessel effects on catchability and fishery-
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58 dependent indices is well known with variation in � related to variables such as vessel size, 

59 crew size, GPS technology, power of motor, and specific gear characteristics (Maunder, 

60 2001; Maunder and Punt, 2004; Thorson and Ward, 2014). Fisheries-independent data for use 

61 in developing abundance indices are generally recognized as superior to fishery-dependent 

62 data (e.g. Dennis et al., 2015), however, these data are similarly vulnerable to variable �. For 

63 example, the catchability of reef fish with common baited traps can be strongly related to 

64 environmental variables such as temperature, depth, soak time, and substrate characteristics 

65 (Coggins et al., 2014; Bacheler et al., 2014; Shertzer et al., 2016). At best, these influences on 

66 catchability add noise into catch data but can also result in spurious patterns in �� that do not 

67 reflect �� when influential variables change systematically across space and time (e.g. 

68 Walters and Maguire, 1996; Ward, 2008; Langseth et al., 2016). 

69 Shifts in sampling design elements such as the spatial frame of sampling and 

70 sampling methods commonly occur in long-term monitoring programs. Typically intended to 

71 improve sampling, these idiosyncrasies can also create challenges when developing fisheries 

72 indices (Conn et al., 2017). Similar to changes in catchability, changes in the spatial sampling 

73 frame and associated environmental characteristics can influence the component of the stock 

74 targeted by sampling (e.g. Walters and Maguire, 1996; Langseth et al., 2016). This is also 

75 true for changes in sampling gears and is the reason why there is a continuous development 

76 of methods to create spatially-explicit indices (e.g. Walters, 2003; Cao et al., 2017; 

77 Ducharme-Barth et al., 2018) and indices that integrate multiple sampling methods (e.g. 

78 Conn, 2010; Gibson-Reinemer et al., 2017; Kotwicki et al., 2018; Ono et al., 2018). Thus, 

79 methods that are robust to variation in catchability due to environmental variables, as well as 

80 shifts in sampling frame and sampling methods, are important tools for stock assessment 

81 scientists (Maunder and Piner, 2015). 
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82 The management of many economically important reef fisheries along the southeast 

83 U.S. Atlantic coast rely on indices derived from surveys using fishery-independent chevron 

84 traps. These traps have been used in this region since 1990 but were fitted with video cameras 

85 beginning in 2011 to further understand the quality of chevron trap catch data for indexing 

86 reef fish abundance, including species that do not enter traps (Bacheler et al., 2013a; Shertzer 

87 et al., 2016). The use of underwater video to assess the properties of various sampling gears 

88 is becoming increasingly common in the literature (e.g. Ward, 2008; Parker et al., 2016; 

89 Streich et al., 2018) and can result in a form of replicated count data that may be used to 

90 index abundance (Bacheler et al., 2013b; Schonbernd et al., 2014). However, appropriate 

91 statistical methods that create indices from data collected with these two sampling gears have 

92 yet to be developed. Combining data from multiple gears presents the opportunity for 

93 improved inference, but in this case, introduces two prominent challenges. Firstly, the paired 

94 samples of the chevron trap and video count are not fully independent. Although each gear 

95 represents an independent sample of the vulnerable fish community at the survey location, 

96 they are non-independent at the spatial scale of inference (i.e. the region) because samples are 

97 collected from the same locations and thus do not represent two independent measures of 

98 stock size at the regional level. Secondly, early research comparing trap catches to video 

99 counts revealed substantial variation between the two (Bacheler et al., 2013b), likely due to 

100 differences in how environmental conditions influenced the catchability of traps and videos 

101 for various species of fish (Bacheler et al., 2014; Coggins et al., 2014). 

102 Here we develop a novel fishery-independent index of abundance that integrates 

103 paired trap catches and video counts into a single index of stock size using a Bayesian 

104 hierarchical formulation of a state-space model (SSM). The SSM has three key features that 

105 make it potentially useful for this application: (i) The model incorporates the baited trap 

106 catches and video counts into a single index that accounts for dependence between the gears; 
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107 (ii) the model accommodates changes in catchability due to temporal and spatial variation in 

108 the environment through the use of covariates and random effects of the observation 

109 processes; and (iii) the model can account for aspects of variable catchability due to shifts in 

110 the sampling frame by modeling temporal variation at the meta-population scale separate 

111 from spatial variation at the sub-population scale. We apply this model to vermilion snapper 

112 (Rhomboplites aurorubens) data collected along the southeast U.S. Atlantic coast by the 

113 Southeast Reef Fish Survey as an example and compare it to an index developed with the 

114 current methods (Conn, 2010) taken from the most recent stock assessment for the species 

115 (SEDAR, 2018). The current method of index development (i.e. Conn, 2010) treats the 

116 chevron trap catches and camera counts as independent measures of the stock and does not 

117 explicitly account for shifts in the spatial frame of the surveys, thus offering a useful 

118 comparison for the SSM method. 

119 

120 2. Methods 

121 

122 2.1 Overview of methods 

123 

124 We organize our methods in four main parts. First, we describe the sampling design 

125 and data treatment in the context of the Southeast Reef Fish Survey sampling of R. 

126 aurorubens along the southeastern coast of the U.S., which is the motivation behind our 

127 model; second, we describe the general model structure, covariate structure, model fit 

128 evaluation and model optimization methods used in the example analyses; third we describe 

129 how we compare our index to the current index used for stock assessment of R. aurorubens; 

130 and last we describe validation methods of our model on a set of simplified simulated data 

131 sets. 
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132 

133 2.2 Sampling design 

134 

135 R. aurorubens count data were collected along the southeast United States Atlantic 

136 Coast from Florida to North Carolina by the Southeast Reef Fish Survey (Fig. 1a). All baited 

137 traps were set on or near hard-bottom reef locations. There were 15,629 chevron trap samples 

138 available covering a period of 27 years (1990-2016). The number of locations sampled has 

139 varied substantially among years due to program development and funding. In the early 

140 years, the number of samples collected annually was typically in the range of several 

141 hundred; however, this number has expanded severalfold to over thirteen hundred in the most 

142 recent years. Along with increased sampling intensity, the sampling frame of the program has 

143 expanded in both the latitudinal and longitudinal directions, thus shifting the sub component 

144 of the stock vulnerable to sampling (for a detailed description of the sampling frame shift, see 

145 Appendix A). Traps were set no closer than 200 m from one another to maintain spatial 

146 independence relative to fish movement, and at depths between 13 and 115 m. All trap sites 

147 used for this analysis were selected randomly from a defined sampling frame of hard-bottom 

148 sampling points (Bacheler et al., 2014). Traps were baited with menhaden and set for 

149 approximately 90 min. For the time period of 2011-2016, the chevron traps were fitted with 

150 an outward-looking video camera (Fig. 1b) resulting in 7,644 41-frame video samples (Fig. 

151 1c). The camera (Canon Vixia HFS200 in 2011 - 2014 and GoPro Hero 3 or 4 in 2015 and 

152 2016) recorded at least 20 minutes of video from the bottom, and videos were read according 

153 to Schobernd et al. (2014). Specifically, a series of video frames spaced 30 seconds apart 

154 were read 10 to 30 minutes after the trap landed on the bottom. This resulted in 41 replicate 

155 camera samples and one baited trap sample per site. 

156 
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157 2.3 Data and treatment 

158 

159 For trap data, we analyzed the un-transformed catch and for the video data, the sum of 

160 the counts across the 41 camera frames (SumCount). We chose to use the SumCount of the 

161 camera data because SumCount changes linearly with the MeanCount (Bacheler and 

162 Carmichael, 2014), which is often the preferred camera metric (Conn, 2011; Schobernd et al., 

163 2014; Campbell et al., 2015), and using the SumCount preserves the discrete nature of the 

164 camera counts allowing for the use of derivations of the Poisson distribution to describe both 

165 the chevron trap and camera observation processes. We applied several data filters to either 

166 simplify predictor variables, remove records with missing predictor variables, or to remove 

167 unusual values. Detailed methods of the data cleaning process are reported in Appendix B. 

168 

169 2.4 Model development 

170 

171 The model was formulated with three distinct hierarchical layers such that the relative 

172 abundance at the meta-population level (representing our index of interest, denoted as ��) was 

173 modeled separately from the relative abundance at the sub-population level (i.e. at sample 

174 sites, denoted as ��,�) and separately from the observation processes. By modelling the meta-

175 population level abundance separately from the sub-population abundance, we were able to 

176 isolate the fishery index of interest from components of spatial variation among sampling 

177 locations. This is the key component that separates shifts in spatial sampling frame relative to 

178 latitude, longitude, and depth from the changes in the average meta-population abundance. 

179 Furthermore, by modeling the abundance processes and observation processes with separate 

180 sub-models we were able to separate observation error from process error and account for 

181 systematic variation in catchability. 
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182 The most general version of our model describes the latent meta-population level 

183 relative abundance (hereafter referred to simply as abundance, It) for each year as an 

184 independent, freely estimated parameter represented as: 

185 

log �� ~Normal 0, 100 (1) 

186 

187 however more constrained formulations that assume that meta-population level abundance is 

188 a random effect among years (i.e. log �� ~Normal �, �̅ ), a Markovian random walk (i.e. 

189 log �� = log ���� + ��, where ��~Normal �̅, � ), or any population dynamics model (e.g. 

190 logistic model, age-structured model) could be applied based on the intended use of the 

191 index. If the index will be used to fit a more complex population dynamics model for stock 

192 assessment, it may be desirable to impose as little constraint on the temporal pattern of the 

193 index as possible; thus, we present the model that assumes indexes are independence among 

194 years to represent this case. 

195 Spatial variation in abundance across sample sites each year (sub-population level) 

196 was modeled on the log scale as: 

197 

! + #$%! log���,�� = log �� + �� �,� "�,� (2) 

198 

199 where the term log �� is the year specific intercept of the linear model, �� �,�! is a linear 

200 combination of spatial covariates, and "�,�#$%! describes random site-level variation in 

201 abundance that is not explained by the covariate structure. 

�&#' (#)) as 202 We approximated the baited trap catches (��,� ) and the camera SumCounts (��,� 

203 deviates drawn from Poisson log-Normal distributions, which are similar in character to 

204 negative binomial distributions (Ntzoufras, 2009, p. 315-317), but can demonstrate better 
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205 mixing properties than negative binomial distributions when applied in Bayesian programs 

206 such as JAGS. We specified these models as: 

207 

489: �&#' 489:5;3,4 (3) ��,� ~Poisson ./012�!3,4�5(673,4 < 

=9>5;3,4��,� 
=9>� (4) (#)~Poisson�/012�!3,4�5(673,4 

208 

209 where the mean on the log scale is the site-specific abundance ��,� plus a linear combination 

�&#' (#) 
210 of environmental and/or sampling covariates (i.e. �� �,? and �� �,? ) to account for 

�&#' (#) 
211 systematic variation in catchability. The parameters "�,� and "�,� are gear-specific log-

212 Normal distributed random observation errors modeled as, "�,�~Normal 0, � , with a mean 

213 of zero and an estimated standard deviation specific to each sampling method (i.e. ��&#' and 

�(#)). 214 

215 

216 2.5 Model covariates 

217 

218 To account for systematic variation in our count data, we incorporated a suite of 

219 covariates into the abundance and observation sub-models. We selected covariates based on 

220 two key considerations. Our first consideration was to separate covariates that influenced the 

221 spatial distribution of fish from those that influenced temporal patterns in fish abundance. 

222 This was important because spatial and temporal patterns of abundance are modeled in two 

223 separate hierarchical layers (i.e. equation 1 and 2) to create a distinction between the fishery 

224 index, i.e. temporal patterns in abundance at the meta-population level (It), from spatial 

225 variation in the data due to patterns in the spatial distribution of fish (��,�) and shifts in the 

226 sampling frame through time. Thus, we included nonlinear (quadratic) effects of latitude (lat 
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227 and lat2), longitude (lon and lon2) and depth (dep and dep2), as well as the potential 

228 interaction between latitude and longitude as covariates of local-scale abundance. We 

229 included both main and quadratic effects of these variables to account for any optimal ranges 

230 in latitude, longitude and depth within our sampling frame that vermilion snapper may prefer. 

231 The interaction between latitude and longitude was included to allow any preferred range of 

232 one variable to be dependent on the other. For example, if vermilion snapper demonstrated a 

233 preferred distance from shore, a positive interaction between latitude and longitude could 

234 approximate this spatial distribution. Lastly, we included a measure of bottom relief (rel) and 

235 the percent of the substrate that was hard-bottom (sub) as these habitat features may affect the 

236 local density of fish. Spatial covariates of abundance were incorporated into the model as: 

237 

! D +�� �,� = @�ABC�,� + @DABC�D,� + @EF/G�,� + @HF/G�D,� + @IA���,� + @JA���,� (5) 

@KABC�,�A���,� + @L�/A�,� + @MNOP�,�. 

238 

239 Our second key consideration was to separate covariates of the abundance and 

240 observation processes. This was important because our model likely has limited ability to 

241 disentangle systematic patterns in abundance from systematic patterns in catchability when 

242 they are similar. Thus, we do not expect to be able to resolve the effects of covariates that 

243 have similar influences on patterns in abundance and catchability (Barker et al., 2017). Given 

244 this limitation, the most useful covariates for predictive purposes are those that either, (i) only 

245 influence abundance or catchability, or (ii) have very different influences on abundance and 

246 catchability. Thus, we included main and quadratic effects of trap soak time (E and E2), and 

247 main and quadratic effects of temperature (temp and temp2) as continuous variables; we 

248 included water turbidity (turb) as a categorical variable with two levels (low as turb = 0 and 

249 high as turb = 1); and we included current direction as a categorical variable with three levels 
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250 (current away from the lens and trap opening indicated by dir1 = 0 and dir2 = 0; current 

251 towards the side of camera and trap indicated by dir1 = 1 and dir2 = 0; and current away 

252 from the lens and trap mouth indicated by dir1 = 0 and dir2 = 1). We incorporated these 

253 covariates into our chevron trap observation model as: 

254 

�&#' �� �,� = Q�R�,� + QDR�D,� + QEC/SG�,� + QHC/SG�D,� + QICO�P�,� + (6) 

QJFT�1�,� + QKFT�2�,�. 

255 

256 In the camera catchability sub-model, we included turbidity, current direction, and main and 

257 quadratic effects of bottom temperature as: 

258 

(#) =�� �,� V� + VDCO�P�,� + VEFT�1�,� + VHFT�2�,� + VIC/SG�,� (7) 

+ VJC/SG�D,� + W� 

259 

260 where the intercept V� allows for a systematic difference in the catchability of the camera 

261 relative to the chevron trap. The parameter W� is a fixed value (i.e. log(1.72), Bacheler and 

262 Ballenger, 2018) that accounts for the increased field of view of the video cameras used in 

263 2015 and 2016. All continuous covariates were centered on zero and scaled to one standard 

264 deviation with the exception of the effort covariate. We scaled effort by subtracting 60 and 

265 dividing by 60 to ease interpretation (effects are relevant to one hour). The absolute value of 

266 the Pearson correlation coefficient between covariates were all < 0.6 with the exception of 

267 latitude and longitude (ρ = 0.87); however, we chose to retain both covariates as we expected 

268 that they would both be important for describing site-level variation in abundance and the 

269 correlation would not impact adversely on the abundance index after model regularization. 

270 All covariate definitions are provided in Table 1, the correlation matrix of all covariates is 

12 

https://log(1.72


 

 

                

     

  

        

  

             

               

               

             

           

              

             

               

                 

                

              

       

  

        

  

               

                

                

              

                

271 presented in Table B1 (of Appendix B) and JAGS model code and fitting methods are 

272 provided in Appendix C. 

273 

274 2.6 Model fitting and prior specification 

275 

276 The posterior distributions of all parameters were estimated using a Gibbs sampler 

277 implemented in JAGS (Plummer, 2003). We called JAGS from program R (R Core Team, 

278 2015) using the library R2jags (Su and Yajima, 2015). All prior distributions of log-scale 

279 covariate effect parameters, including model intercepts and the fisheries index �� were 

280 specified as diffuse normal distributions (N[0,100]). Standard deviation parameters including 

281 all random effects were specified as scaled half Student-t distributions with input parameter 

282 values chosen to stabilize fit while inducing negligible parameter shrinkage (i.e. X = 0, Y = 

283 2.78, ] = 2). Inference was drawn from 10,000 posterior samples taken from two chains of 

284 106 samples. We discarded the first 500,000 values of each chain to remove the effects of 

285 initial values and thinned the chain to every 100th value. Convergence of all models was 

286 
ˆdiagnosed by visual inspection of trace plots and Gelman-Rubin statistic ( R ≤ 1.1 indicate 

287 model convergence, Gelman et al. 2004). 

288 

289 2.6 Model fit evaluation and regularization 

290 

291 There are two common purposes of models in applied ecology, (i) causal explanation 

292 and (ii) empirical prediction, and the same model will often not perform well for both 

293 purposes (Shmueli, 2010; Authier et al., 2016). A model used for the purpose of explanation 

294 requires that the uncertainty in parameter estimates are appropriately accounted for such that 

295 the realized 95% credible interval coverage is equivalent to the a priori expectation (i.e. true 
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296 parameter value contained within 95% CI 95% of the time). In practice, this requires that the 

297 model error structure adequately explains the residual error and, thus, can be determined with 

298 model fit tests. Alternatively, the optimal predictive model will often be a model where the 

299 covariate effect estimates are removed or shrunk towards zero through a process termed 

300 regularization (e.g. Reineking and Schroder, 2006; Hooten and Hobbs, 2015). Thus, some 

301 level of increased bias is accepted for the predictive advantage of decreased variance. 

302 Although optimal prediction of our index is our main purpose, we were also interested in the 

303 influence of our covariates on abundance and catchability. Thus, we first used a posterior-

304 predictive check to determine an adequate error structure for our fully parameterized model 

305 for the purpose of evaluating covariate relationships (termed ‘global model’). Covariates 

306 were considered statistically different than zero when the associated 95% Bayesian credible 

307 intervals (quantile based) did not include zero. Second, for our best error structure, we used a 

308 process termed Stochastic Search Variable Selection (SSVS) to induce shrinkage of covariate 

309 effects and generate a model with optimal predictive properties to produce the fisheries index 

310 (termed ‘reduced model’). Using SSVS to produce models with desirable predictive 

311 properties was first introduced by George and McCulloch (1993) but has been thoroughly 

312 discussed in more recent ecological literature by O’Hara and Sillanpaa (2009), Tenan et al. 

313 (2014), and Hooten and Hobbs (2015). 

314 We evaluated model fit of the global model for eight general model error structures 

315 with Bayesian p-values (Kéry, 2010). The Bayesian p-value is a posterior-predictive check 

316 that provides a measure of under- or over-dispersion of the data relative to the model (Kéry, 

317 2010; Hooten and Hobbs, 2015). The eight error structures were models that either included 

, "�&#' 318 or excluded the random variables "#$%! , and/or "(#). We performed our model fit 

319 evaluation by simulating our data directly from each model for each Markov Chain Monte 

320 Carlo (MCMC) iteration and calculating a Pearson residual between the simulated and 
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321 expected values (i.e. predicted ^D) and observed and expected values (i.e. observed ^D). The 

322 simulated data are considered “perfect” because they are generated directly from the model 

323 and, thus, the resulting Pearson residual represents the fit of the model when all model 

324 assumptions are perfectly met (Kéry, 2010). We then created a fit metric that is equal to zero 

325 when the Pearson residual was greater for the observed data than the simulated data and is 

326 equal to one, otherwise. The Bayesian p-value was then calculated as the mean of the 

327 posterior sample of the fit metric for each data type, where a mean of 0.5 indicates perfect 

328 model fit to the data and a mean approaching 1 or 0 indicates under- or over-dispersion of the 

329 data relative to the model, respectively. 

330 We chose the procedure of SSVS to produce the reduced model and optimize 

331 prediction because preliminary analysis indicated that processing times in excess of four days 

332 may be expected for the example data. Thus, many common approaches to variable selection 

333 that either employ iterative model runs such as information theoretic methods (e.g. AIC, 

334 WAIC, DIC, etc.) or k-fold cross validation are prohibitive. Therefore, we employed SSVS 

335 which took approximately five days to complete two million MCMC iterations. We applied 

336 the SSVS method for each covariate effect parameter in Eq. 5, 6, and 8 to invoke parameter 

337 shrinkage. Specifically, we applied a hierarchical structure for each of our covariate priors 

338 that is conditional on a random effect indicator variable as: _�@?|a?�~Normal�0, �?�, where 

339 �? = 100a? + 0.01. The variable a? is a random effect for each covariate that has a prior 

340 distribution of _�a?�~Bernoulli 0.5 , such that when a? = 1, �? = 100.01, approximating a 

341 standard uninformative prior on the covariate effect parameter @?. Alternatively, when a? = 

342 0, �? = 0.01 which approximates a highly informative prior for a @? ≅ 0. Thus, the 

343 conditional prior creates a region of high probability around zero similar to ridge regression 

344 or a “slab and spike” prior (Tibshirani, 1996; Ishwaran and Rao, 2005). Furthermore, the 

345 posterior mean of a? can be interpreted as the relative support of a non-zero value of @? 
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346 similar to the posterior probabilities for different model structures obtained via reversible 

347 jump methods (e.g. Hillary 2011). However, one advantage of the SSVS process is that 

348 model predictions are automatically model averaged, providing a more refined level of 

349 regularization. Thus, we produced the index from the regularized model that included all 

350 covariates as well as the indicator variables and conditional priors. 

351 

352 2.7 Comparison of indices 

353 

354 To increase our insight into the value of the SSM index, we compared it to an index 

355 developed for use in the most recent stock assessment of R. aurorubens (Conn, 2010; 

356 SEDAR, 2018; hereafter referred to as the “Conn index”). The Conn index utilized a 

357 hierarchical analysis to combine multiple indices into a single index for use in stock 

358 assessment (Conn, 2010). The method requires prior knowledge of sampling error and 

359 constraints on process error, which may be difficult to inform. A detailed description of 

360 methods is provided in Conn (2010). In brief, the approach treats multiple, independently 

361 developed indices of abundance as measurements of the same underlying quantity (the true 

362 relative abundance), with each index subject to sampling and process error. For this 

363 application toward R. aurorubens, two indices were combined, one developed from video 

364 gear (Cheshire et al., 2017) and one from chevron traps (Bubley and Smart, 2017). Thus, the 

365 data were the same as those used for the SSM index, and the primary difference in 

366 methodology is that the Conn (2010) approach operates on previously created indices, 

367 whereas the approach presented here operates at the level of the observed data. By doing so, 

368 our approach more naturally accounts for the lack of independence between the gears that 

369 might be expected when sampling co-occurs (i.e., cameras are mounted on traps) and the 
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370 potential impact of non-independence between the sampling methods on the index 

371 uncertainty. 

372 To simplify comparison of the indices we used a parametric bootstrap method to 

373 estimate the linear slope of population change through time for each index. For each year and 

374 index, we sampled 10,000 random values drawn from log-Normal distributions with the 

375 means specified as the annual index point estimates and the associated standard deviations. 

376 For each random sample, we use least square methods to estimate the intercept and slope of 

377 the index through time on the log scale. This results in a probability distribution of the log-

378 scale linear trend for each index. 

379 

380 2.7 Model validation 

381 

382 To validate the efficacy of our model, we addressed two questions with a simulation 

383 experiment; (i) is our model identifiable and (ii) does it produce unbiased parameter estimates 

384 when applied to perfect data? Our methods were to define a data-generating model, simulate 

385 multiple datasets, and analyze the simulated datasets with the data-generating model. Our 

386 data-generating model is presented in Table 2 and was identical to the model described for 

387 our R. aurorubens analysis where the temporal abundance process is modeled as an 

388 independent variable for each year (Eq. 1, Table 2) drawn from a log Normal distribution 

389 with a mean and standard deviation set to represent observed variation in the R. aurorubens 

, "�&#' , and "(#) 
390 index. However, we excluded the random variables "#$%! to reduce the 

391 limitations of computation time. We simulated nine covariate relationships influencing sub-

392 population level abundances, trap catchability and camera catchability (g��M, Table 2), where 

393 the simulated covariates, x1-x9 (Table 2) are nine separate vectors of random draws from 

394 normal distributions with mean of zero and standard deviation of one to simulate generic 
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395 centered and scaled covariates. We chose covariate effect sizes arbitrarily to represents 

396 different levels of effects and the absence of effects. The input values for the simulated 

397 covariate effects were, g�,H,K = 1, gD,I,L = −.5, and gE,J,M = 0. Simulated data sets were fit 

398 with the data generating model. We report the mean absolute error as a measure of bias and, 

399 to evaluate if the credible interval coverage was appropriate, we reported when the true 

400 parameter value was excluded from the 95% credible intervals for each iteration of the 

401 simulation. All simulation code is included in Appendix D. 

402 

403 3. Results 

404 

405 3.1 Simulation study 

406 

407 Our simulation study revealed that the SSM model does indeed return unbiased 

408 estimates of meta-population abundance (��) and covariate relationships with appropriate 

409 credible intervals. The mean absolute error of all covariate effect estimates centered on zero 

410 (Fig. 2a) and the true value was included in the 95% Bayesian credible intervals between 91.5 

411 and 96.5% of the time. The results for the simulated relative abundance index were similar 

412 with little to no systematic bias (Fig. 2b) and 95% credible interval coverage of the true index 

413 value for 90.2 to 97.2% of simulation interactions. These results indicate that the model is 

414 identifiable and produced unbiased parameter estimates with appropriate levels of 

415 uncertainty. 

416 

417 3.2 Vermilion snapper analysis 

418 
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419 All eight error structures of the global model fit to R. aurorubens count data 

420 converged after 106 iterations and each required up to 96 hours of computer processing of 

421 two MCMC chains run in parallel. Our posterior-predictive check indicated that three model 

422 error structures adequately fit the data (models 1, 2, & 3 in Table 3). All of these models 

423 included a site-specific random effect in the abundance sub-model ("#$%!) and either a site-

424 specific random effect in the camera sub-model ("(#)), the trap sub-model ("�&#') or both. 

425 Global model 2 and 3 had the simplest structure of only two random effects, allowing us to 

426 exclude global model 1 as the most parsimonious error structure. Global model 3 produced a 

427 lower model deviance than global model 2 and the posterior estimates of the standard 

428 deviation of the random effect "�&#' were near zero when estimated with global model 1 

429 offering additional support for global model 3 as the best error structure (See Appendix E). 

430 Thus, we used global model 3 for the remaining analyses in this paper. This model included 

431 the random effects "#$%! and "(#) and excluded the random effect "�&#' (Table 3). 

432 Most of the covariates evaluated with global model 3 (had a statistically significant 

433 influence on abundance or catchability (Table 4). We found that the strongest determinants of 

434 sub-population abundance (��,�, equation 3) were the latitude, longitude, depth, and percent 

435 hard-bottom substrate at the sample site (Fig. 3, Table 4). However, the interaction between 

436 the latitude and longitude of the location was also a strong influencer (Fig. 3, Table 4). The 

437 only covariates of abundance that were not statistically different than zero were the main 

438 effect of depth (lon2, @J ≈ 0, Table 4) and the bottom relief at the site (rel, @L ≈ 0, Table 4). 

439 The catchability of the chevron trap was found to be strongly related to the amount of time 

440 the trap was set (E, Q� > 0, Table 4) and its square (E2, QD < 0, Table 4). This relationship 

441 suggests that the number of R. aurorubens captured increases with trap soak time to a 

442 maximum (at ~110 minutes of soak time), beyond which the catch declines (Fig. 4a). 

443 Temperature and its square (temp QE VI and temp2 QH VJ, Table 4) defined a pattern in 
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444 catchability for both the chevron trap and camera that stayed fairly constant at lower 

445 temperatures and increased rapidly at temperatures greater than ~25° C (Fig. 4b); however, 

446 this pattern was less pronounced for the camera (Fig. 5a). Current direction influenced the 

447 catchability of both the chevron trap and camera (QJ, QK, VD, and VE, Table 4) but was a 

448 stronger effect for the camera (Fig. 4c and 5c). For both gears, the lowest catchability was 

449 when the current direction was towards the mouth of the trap and camera lens, while it was 

450 the highest when the current direction was away from the trap mouth and camera lens (Fig. 

451 4c and 5c). Finally, higher levels of turbidity increased the catchability of the camera (Table 

452 4, Fig. 5b), but had no influence on chevron trap sampling efficiency (Table 4). 

453 Our model regularization procedure resulted in a reduced model with the effective 

454 removal of eight covariates relative to the global model (a? << 0.05, Table 4). For example, 

455 the three non-statistically significant covariates (i.e. @J, @L, and QI, Table 4) had a? values 

456 equal to zero. Additionally, six statistically significant covariates (i.e. @I, QJ, QK, VE, VH, and 

457 VI) were effectively removed from the model with a? values ≤ 0.23. Although statistically 

458 different than zero in the global model, these covariates tended to have small effects sizes 

459 with relatively high levels of uncertainty (Table 4). We found that the value of several 

460 covariates with high inclusion probabilities (i.e. a? ≈ 1.00) differed between the global and 

461 reduced model (i.e. @�, @E, @H, VD, Table 4). This is likely a result of some level of 

462 multicollinearity among covariates (particularly for latitude and longitude covariates). Our 

463 index generated from the reduced model tended to be equally precise as the index generated 

464 from the global model with an average coefficient of variation of 0.40 (range across years = 

465 0.35, 0.52) and 0.42 (range across years= 0.36, 0.51), for the reduced and global model, 

466 respectively. The observed different of 0.02 is likely not large enough to be biologically 

467 relevant. 
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468 Our index of R. aurorubens suggests high annual variation in abundance (Fig. 6a). For 

469 example, our model predicted a nine-fold increase in abundance between 1990 and 1991. 

470 After 1991, annual variation in abundance ranges between a 168% increase in 1994 and an 

471 87% decrease in 2003. This level of variation was fairly consistent across the time series (Fig. 

472 6a). The index also suggests a linear decline in R. aurorubens since the 1990s. A 

473 bootstrapped slope of this decline on the log scale was statistically negative (X = -0.60, 95% 

474 CI = -0.69, -0.51, Fig. 6b) and suggests that R. aurorubens are currently (2016) at about 16% 

475 of their average abundance in the early 1990s (i.e. 1990-1995). 

476 The SSM index described a very similar pattern in abundance to the index generated 

477 from the methods of Conn et al. (2010); however, there were some differences (Fig. 6c). For 

478 example, the Conn index had a smaller average coefficient of variation than the SSM index 

479 (Conn = 0.35, SSM = 0.40) and demonstrated some differences in year-to-year variation in 

480 the index, however these differences were subtle (Fig. 6a, and b). Most notably, the SSM 

481 index described a stronger pattern of decline across the time frame of the data than the Conn 

482 index. The bootstrapped slope of the Conn index was statistically different than zero but 

483 nearly half the value of the SSM index (X = -0.36, 95% CI = -0.49, -0.24, Fig. 6d). This 

484 decline suggests that R. aurorubens in 2016 are at approximately 33% of their mean 

485 abundance in 1990-1995, which is over twice the value predicted by the SSM index. 

486 

487 4. Discussion 

488 

489 We developed a state-space model that integrates data from multiple gears that are 

490 non-independent relative to the sampling process into a single fisheries index. We 

491 demonstrated its use for indexing R. aurorubens abundance from paired count data derived 

492 from underwater video cameras and catch data from traditional fisheries-independent baited 
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493 traps. The method provides a means to account for random and systematic variation in the 

494 catchability of both sampling gears and adjusts for aspects of non-proportionality due to 

495 changes in the spatial frame of sampling expected when monitoring programs are developing. 

496 The model produced unbiased estimates of meta-population level relative abundance when 

497 the model is correctly specifies and demonstrated good fitting properties. We see this 

498 modelling approach as a flexible tool that has the potential to be useful for generating 

499 fisheries indices for stock assessment for a variety of fish species sampled with paired non-

500 independent gears, particularly traditional gears paired with underwater video cameras. 

501 One of the key strengths of the SSM model is its ability to account for variation in 

502 catchability for both sampling gears. The importance of the covariates of catchability was 

503 highlighted by our SSVS model regularization procedure that indicated the optimal predictive 

504 model included many of these covariates. Furthermore, it is important to note the advantage 

505 that multiple sampling gears provide in addition to covariates when estimating parameters of 

506 state-space models. The addition of multiple gears, and thus, multiple observation sub-models 

507 to the SSM provides contrast between the residual error of each gear and the covariates that 

508 describe it. This contrast between patterns in residual error provides greater information for 

509 the model to disentangle process error from observation error. For example, when relative 

510 catch rates of the gears deviate from the expected value differently, at least one of these 

511 deviations must be due to observation error. Alternatively, when only one observation sub-

512 model is included in the SSM, the pattern in the residual and the a priori choice of covariates 

513 to describe it are the only sources of information that the model has to distinguish observation 

514 error from process error. Furthermore, it is the inclusion of multiple sampling methods that 

515 allows a model that assumes independence of the index among years to be identifiable, which 

516 is a desirable option when the index will be further used to fit a stock assessment population 

517 dynamics model. With only a single observation model, a more confining structure must be 
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518 imposed on the index to obtain identifiability, such as a Markovian process commonly 

519 applied in state-space models (e.g. Clark and Bjornstad 2004; Jiao et al. 2008). Furthermore, 

520 greater contrast between the variation in catchability of the gears will provide the most 

521 informative data and likely result in greater index precision. Thus, the inclusion of multiple 

522 gears can be quite advantageous in this context. 

523 In our case, the direction of the covariate effects on the observation sub-models 

524 tended to be consistent with previous research on the sampling efficiency of these gears 

525 (Bacheler et al., 2013b; Bacheler et al., 2013c; Coggins et al., 2014; Shertzer et al., 2015). 

526 This comes as no surprise because we based our choice of covariates, in part, on these 

527 studies. For example, we found a dome shaped relationship between trap soak time and 

528 catchability that resulted in a maximum catch at about 110 min of soak time. A similar 

529 relationship has been found for other reef fish species such as black sea bass (Centropristis 

530 striata) and is likely the result of entry and exit rates of fish into and out of the trap that 

531 change through time inversely proportional to each other (Bacheler et al., 2013c; Shertzer et 

532 al., 2015). Similarly, we found that the effect of temperature on both the trap and camera was 

533 positive with the appearance of a threshold-like response at ~25° C. Bacheler et al. (2014) 

534 found a comparable relationship between chevron trap catch of R. aurorubens, with a 

535 threshold at ~20° C, but did not detect this relationship for cameras. We observed a positive 

536 relationship between camera counts of R. aurorubens and turbidity which has also been 

537 observed for red snapper (Lutjanus campechanus, Coggins et al., 2014). Although this 

538 response may be counterintuitive, our data filtering process was similar to Coggins et al. 

539 (2014), which removed high turbidity data points that demonstrably impacted the counting of 

540 fish in video frames; thus, this effect may be a result of fish behavioral changes with variation 

541 in water clarity (e.g. McMahon and Holanov, 1995; De Robertis et al., 2003; Andersen et al., 

542 2008). 
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543 Another important benefit of our SSM is that it can account for shifts in the sampling 

544 frame from year to year. For example, over the length of time of the Southeast Reef Fish 

545 Survey sampling program, the number of chevron traps set each year has systematically 

546 increased as the program expanded (particularly since 2011). The expanding of the program 

547 has led to changes in the distribution of traps relative to latitude, longitude, and depth (Fig. 

548 7a, b, c), resulting in variability in the mean covariate values among years with apparent 

549 systematic increases in depth and decreases in latitude over the life of the program (Fig. 7). 

550 Our model accounts for this shift by modeling the index �� at a fixed point in space (relative 

551 to latitude and longitude) and for a fixed depth. The limitation of this method is that it only 

552 accounts for the shift in the sampling frame relative to these covariate relationships. Thus, 

553 any unaccounted for systematic spatial patterns in abundance that coincide with the 

554 expansion of sampling may still result in a biased index. This provides high incentive to 

555 determine the important drivers and structure of the spatial distribution when using this 

556 method, which could include environmental covariates as well as modeling a spatially 

557 autocorrelated residual. In our case, inspection of the residual did not reveal any non-random 

558 patterns in the spatial distribution relative to the covariates and the expanding sampling 

559 design, nor did calculating the index from only the sample locations contained within a core 

560 area that was sampled every year produce an index substantially different from the one 

561 presented in Figure 6a. These two diagnostics suggest low risk of a biased index due to 

562 shifting sampling frame, in our case (see Appendix F for details about the diagnostics). 

563 However, unaccounted for changes in the average abundance due to shifts in the sampling 

564 frame or shifts in the species distribution should be carefully considered when applying this 

565 method. This is particularly the case if the count data are derived from a fishery-dependent 

566 source, where preferential sampling that is often related to fish density is common (Pennino 

567 et al. 2018). As accounting for preferential sampling in the analysis of count data can be 
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568 analytically challenging (e.g. Conn et al. 2017, Pennino et al. 2018), we recommend, first, 

569 that appropriate spatial designs be used for sampling and, when this is not possible, that 

570 appropriate diagnostics be used to evaluate the risk of induced bias. 

571 

572 4.1 Model extensions 

573 

574 There are several possible extensions to the SSM that would allow it to accommodate 

575 various idiosyncrasies of different data sets worth discussing. One prominent extension is to 

576 accommodate various levels of zero inflation in the sub-population model. Our example data 

577 set was zero inflated with 75% and 70% zeros in the trap catches and camera counts, 

578 respectively. We approximated the structural component of these zeros with the log-normal 

579 random effect "#$%!; however, this method makes explicit the assumption that these potential 

580 zeros are actually very small non-zero values. Our model fit test suggested that this model 

581 structure provided adequate fit to our example data; however, another option is to model a 

582 zero-inflated spatial abundance process by including a shared Bernoulli variable in both (or 

583 all) observation models as: 

584 

489:5;3,4�&#' 489: (8) ��,� ~Poisson .l�,�/012�!3,4�5(674,m < 

=9>5;3,4=9> ��,� < (9) (#)~Poisson .l�,�/012�!3,4�5(674,m 

585 

586 where l�,� is a latent random variable distributed as, l�,�~Bernoulli�n�,��. The Bernoulli 

587 probability of a non-zero abundance could be modeled independently for each year, as a 

!
588 function of a set of spatial covariates with a logit link, or as a function of �� �,� to create a 

589 formal relationship between the spatial abundance and occurrence processes (e.g. Smith et al. 
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590 2012). Additionally, a zero-inflated observation process could be modelled by specifying 

591 unique Bernoulli processes for each observation sub-model. 

592 Another prominent extension would be to model spatiotemporal variation in patterns 

593 
#$%! in abundance more explicitly. For example, applying a multivariate normal prior to " �,� to 

594 explicitly model spatial auto-correlation could be used to improve the predictive potential of 

595 the model and to better account for changes in the spatial distribution of sampling among 

596 years. Furthermore, specifying covariate effects of the spatial abundance process as random 

597 effects across years could be used to evaluate and account for non-stationarity in these 

598 relationships through time. These are only a few examples of potentially useful extensions to 

599 our model that could improve its application to various settings. Thus, we see this model as a 

600 foundation that could be easily extended to accommodate the nuances of a variety of data 

601 structures and contexts. 

602 

603 4.2 Management implications 

604 

605 The application of our model to R. aurorubens revealed a systematic decline in 

606 abundance across the time period of 1990-2016. This decline was similar to, but stronger than 

607 the decline described by the Conn index (Conn et al., 2010). This discrepancy between the 

608 two indices is in the direction that would be predicted given the systematic expansion of the 

609 sampling design into latitudes, longitudes, and depths of greater abundance, and given that 

610 the Conn index does not account for this systematic expansion, while the SSM does (Figure 

611 7d). The difference also suggests that the R. aurorubens stock may have a lesser ability to 

612 compensate for the reductions in density due to harvest (i.e. lower productivity) than would 

613 be indicated by the Conn index. It is difficult to predict the effect this would have on 

614 management recommendations; however, we may expect the use of the SSM in a formal 
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615 stock assessment to result in more conservative harvest regulations to meet management 

616 targets such as Maximum Sustainable Yield (Beverton and Holt, 1957) and maintain 

617 acceptable levels of risk of overfishing (Zhou et al. 2016). Although an explicit comparison 

618 between the outcomes of formal stock assessments with each index would be necessary to 

619 know this for sure. 

620 
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802 

798 Tables 

799 

800 Table 1 

801 Covariate descriptions and definitions. 

Variable Abbreviation Class Definition 

Latitude lat continuous The latitude of the sample location. 

Longitude lon continuous The longitude of the sample location. 

Depth dep continuous A continuous variable indicating the water 

depth at the trap location. 

Soak time E continuous A continuous variable indicating the length 

of time the trap was set before retrieval. 

Temperature temp continuous The water bottom temperature at the trap 

locations during sampling. 

Turbidity turb categorical A dummy variable indicating the level of 

turbidity (1 = level 2, 0 = level 1). 

Substrate sub continuous The percent of the substrate visible with the 

camera that is hard-bottom. 

Relief rel categorical A dummy variable with value of 1 indicating 

that the relief was “high”. 

Current away dir1 categorical A dummy variable that is 1 when the current 

direction is flowing away from the camera 

lens. 

Current side dir2 categorical A dummy variable that is 1 when the current 

direction is flowing perpendicular to the 

camera lens. 
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 Data-generating model  Description  Inputs  

 Process model    

� 
 �log �� ~Normal X, � 
 
!log���,�� = � 
  log �� + �� �  ,� 

!  �� �,� =  g�q1�,� + gDq2�,� + gEq3�,� 
   Trap observation model 

489: �&#' ~Poisson ./012�!3,4�5(673,4  < ��,� 
�&#'  �� �,� =  gHq4�,� + gIq5�,� + gJq6�,� 

   Camera observation model 
=9> (#)~Poisson�/012�!3,4�5(673,4  � ��,� 

(#) =  �� �,�  gKq7�,� + gLq8�,� + gMq9�,� 

   Temporal abundance model 

   Site-level abundance model 

 Spatial covariates  

 

   Trap observation model 

   Trap catchability covariates 

 

   Camera observation model 

  Camera catchability covariates  

X =  −3, � = 
0.93  

 

g� =  1, gD = 
 −0.5, gE = 0  
 

 

gH =  1, gI = 
 −0.5, gJ = 0  
 

 

gK =  1, gL = 
 −0.5, gM = 0  

 

 

 

 

   

805 Table 2 

806 Simulation structure and inputs. The equations represent the structure of the data-generating 

807 model and the Inputs are the parameter values used in the simulation. 

808 

809 

810 

811 
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812 Table 3 

813 Bayesian p-values for model fit evaluation. Each model includes or excludes site level 

814 random effects in the abundance ("#$%!), trap ("�&#'), and camera ("(#)) sub-models. The 

815 Bayesian p-value is the output metric of a posterior-predictive check where a value of 0.5 

816 indicates perfect fit of the model to the data and values approaching zero or one indicate 

817 under- or over-dispersion of the data relative to model predictions, respectively. 

818 

# 
Random effects Model Bayesian p-value 

included in model deviance Camera Trap 

1 "#$%! , "�&#' , "(#) 31511.1 0.33 0.49 

2 "#$%! , "�&#' 31487.2 0.11 0.67 

3 "#$%! , "(#) 31281.3 0.33 0.48 

4 "�&#' , "(#) 31741.2 0.99 0.71 

5 "#$%! 120003.7 0.02 0.67 

6 "�&#' 3081507.0 1.00 0.64 

7 "(#) 183413.1 1.00 1.00 

8 None 3218795.0 1.00 1.00 
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Variable  Parameter  Mean  
 95% Credible  

 intervals 

Mean  

 (SSVS) 
�? 

Abundance      

  lat  @�  -1.38  -2.03, -0.71   -1.86  1.00 
2  lat   @D  -1.02  -1.27, -0.76   -1.00  1.00 

  lon  @E  0.80   0.24, 1.35  1.24  1.00 
2  lon   @H  -1.03  -1.33, -0.74   -0.64  1.00 

  lat:lon  @I  0.79   0.29, 1.32  0.09  0.12 

  dep  @J  0.12   -0.04, 0.29  0.00  0.00 
2  dep   @K  -0.15  -0.19, -0.1   -0.14  1.00 

  rel  @L  0.04   -0.33, 0.39  0.00  0.00 

  sub  @M  0.61   0.50, 0.73  0.60  1.00 

 Trap      

  E  Q�  4.65   2.86, 6.47  4.83  1.00 

E2    QD  -2.92  -4.28, -1.6   -3.05  1.00 

  temp  QE  0.81   0.71, 0.91  0.72  1.00 
2 temp   QH  0.11   0.09, 0.13  0.10  1.00 

  turb  QI  0.04   -0.21, 0.28  0.00  0.00 

  dir1  QJ  0.63   0.32, 0.97  0.10  0.23 

  dir2  QK  0.35   0.06, 0.64  0.00  0.00 

 Camera      

  turb  V�  0.78   0.49, 1.03  0.79  1.00 

  dir1  VD  1.06   0.72, 1.43  0.59  1.00 

  dir2  VE  0.41   0.06, 0.76  0.00  0.00 

  temp  VH  0.28   0.13, 0.42  0.02  0.11 
2 temp   VI  0.05   0.00, 0.11  0.00  0.00 

  

   

821 Table 4 

822 Covariate parameter posterior summaries. Posterior means and credible intervals are derived 

823 from posterior samples of the full model prior to model reduction. The grey text indicates 

824 covariates that are not statistically different than zero at t = 0.05. Variable definitions are 

825 presented in Table 1. The column labeled ‘Mean (SSVS)’ is the mean of the posterior 

826 distribution with induced shrinkage via the Stochastic Search Variable Selection procedure 

827 (SSVS) and the column labeled ‘Ij’ is the parameter inclusion indicator variable. 

828 

829 

830 

38 



 

 

  

  

  

                  

              

        

   

831 Figures 

832 

833 

834 Fig. 1. Study area (a), sample video frame (b) and a Chevron fish trap outfitted with an 

835 outward-looking Canon high-definition video camera over the mouth of the trap (c). The 

836 points on panel (a) represent sample locations. 

837 
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838 

839 

840 Fig. 2. The bias of simulated covariate effect parameters (a) and fishery index (b) posterior 

841 distributions. Posterior samples were derived by fitting the data-generating model to 200 

842 simulated 20-year data sets. 
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844 

845 Fig. 3. The predicted response of sub-population abundance to spatial covariates. The grey 

846 region represents 95% Bayesian credible intervals. 
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848 

849 

850 Fig. 4. The predicted response of chevron trap sampling efficiency to sampling and 

851 environmental covariates. The grey region represents 95% Bayesian credible intervals. 
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854 

855 

856 Fig. 5. The predicted response of video camera sampling efficiency to environmental 

857 covariates. The grey region represents 95% Bayesian credible intervals. 
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859 

860 

861 Fig. 6. The predicted annual relative abundance of the vermilion snapper meta-population 

862 using our State-Space Model (a) and the methods of Conn et al. (2010) (c). The grey region 

863 represents 95% Bayesian credible intervals. The dashed line represents the estimated linear 

864 trend. Panels (b) and (d) represent the probability distributions of the bootstrapped linear 

865 trend for each index. 

866 

44 



 

 

   

               

                

                

                 

                

             

  

867 

868 Fig. 7. Impact of changing sampling frame on the predicted relative abundance at the meta-

869 population level. Panel (a), (b), and (c) represent the mean and range in latitude, longitude, 

870 and depth across samples collected each year. Panel (d) is the model predicted increases to 

871 the fishery index expected when the spatial changes on panel (a), (b), and (c) are not 

872 accounted for. The grey region on panel (d) represents 95% Bayesian credible intervals of the 

873 predictions and the dashed line is the log-linear trend of the predictions. 

874 
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